
WHITEp a p e r

PROGRAMMING CONTROLLERS: C VS. RELAY LADDER LOGIC
By G. Young, Customer Support Manager

The World of program-
mable controllers has
become more sophis-

ticated if not more complicated.
No longer is it sufficient for a
machine to endlessly perform the
same series of actions. Systems
now, in addition to performing
repetitive tasks, must optimize
procedures in order to maximize
production while keeping basic
statistics (a requirement of quality
assurance). Moreover, many
systems must interact with one or
more third-party devices with
interfaces that are alien to the
controlling Programmable Logic
Controller (PLC). Some systems
must also interface with at least
one enterprise-wide network that
provides management with up-to-
the-minute information.

Relay Ladder Logic (RLL)
was designed to provide more
flexible software simulation that
would replace the relays, timers,
and counters common to control
systems of the 1960s and 1970s.

RLL has been successful in not
only achieving, but in surpassing
its modest goals. RLL is a power-
ful tool when applied to an
application that performs specific
tasks. However, RLL cannot meet
the multiple challenges of today�s
PLCs even though some RLLs
have been retrofitted with features
to handle more complicated
application demands. At best,
these enhancements are awkward
and slow and are either difficult or
nearly impossible to use. RLL is
simply not suited for today�s more
complicated industrial problems.

C, on the other hand, was
designed to be a general purpose
programming language. Not only
does C dominate the development
of applications for personal and
corporate computing, it dominates
the development of embedded
systems. Therefore, C is used to
program everything from word
processors and databases to
microwaves and TVs. In essence,
C is everywhere.

The reason for C�s popularity
is its general-purpose nature.
Because C makes no assumptions
about its environment or what
types of tasks it will perform,
programs written in C use re-
sources much more efficiently
than equivalent RLL systems.

Most PLCs provide the user with
a fixed number of devices such as
auxiliary relays, registers, and
timers. Eventually, every RLL
programmer encounters a situa-
tion where a fixed allocation of
assets is not acceptable for an
application. For example, a
particular application may only
require a few auxiliary relays and
timers, but requires more registers
than an RLL application can make
available.

 The most aggravating
aspect of this scenario is that the
PLC often has the needed
memory, but has allocated that
memory to unneeded auxiliary
relays and timers. When pro-
gramming in C, allocating
memory is not a problem because
the programmer is in control of
how resources are allocated. As
long as a programmer does not
attempt to allocate more resources
than available, C allows the
programmer to decide how to use
resources.

When programming in C,
 allocating memory is not a

problem because the
programmer is in control

of how resources are
allocated.

This paper examines two methods
of programming embedded
controllers and describes the
benefits of using C-Language in
industrial control applications.

Z-World White Paper No. 100 Part No. 022-0022 Rev. B

 C can solve most
programming problems
and is supported on all

major programming
platforms.

Another important advantage
of C is its execution focus. RLL
was written to simulate
hardware�s inherently parallel
operation. Parallel operation is
accomplished by executing every
�rung� of the RLL program on
each scan. While this achieves
the desired results, it has one
major drawback: scan times
increase as the size and complex-
ity of the program increases.
When attempting to use RLL to
perform complex tasks, scan
times, which can increase to
more than 10 milliseconds, are
generally too slow for most
applications.

C, however, has a program
counter that starts at the function

main (the first function executed
in any C program). The program-
mer counter works its way
through the code, directed by flow
control statements written by the
programmer. A processor running
a C program is executing only one
sequence of instructions at a time.

While one sequence of instruc-
tions is executed, the rest of the
program is idle, waiting to ex-
ecute the next set of instructions.
This single execution focus gives

the programmer incredible power
to decide which aspects of the
application need the most intense
attention and which only need to
be checked periodically. Without
this control, handling high-speed
events (such as deployment of an
airbag) would be impossible.

In today�s more sophisticated
realm of programmable control-
lers, it is well worth the time
invested to become a proficient C
programmer. C can solve most
programming problems and is
supported on all major program-
ming platforms. Ultimately, a
good C programmer can write
programs that out perform those
of an equally competent program-
mer using RLL.

C and RLL Characteristics

C Programming Language

� Programming flexibility provides many
means to solve a problem. So many, in fact,
that a novice often gets overwhelmed by the
possibilities.

� Ability to focus execution on a small section
of code. Important for applications where
certain functions are not done often enough or
are skipped entirely.

� Less intuitive for beginners and a little harder
to learn than RLL.

� A useful set of basics can be learned quickly,
but the more complicated aspects of the
language can be quite confusing even to
programmers with moderate experience.

� Designed to perform a single task, and
performs that task well.

Relay Ladder Logic

� So restrictive that the simplest problems often
seem to solve themselves.

� Executes every section with every scan. There
is no chance of code not executing.

� Can be learned relatively quickly.

http://www.zworld.com

Z-World White Paper No. 100 Page 2 of 2

Part No. 022-0022 Rev. B

Z-World, Inc. � 2900 Spafford Street, Davis, California 95616 U.S.A. � 530.757.3737 Fax: 530.753.5141

