

Trio Motion Technology, Ltd. 187 Northpointe Blvd. Tomson Centre
Shannon Way, Tewkesbury, Suite 105 118 Zhang Yang Rd., B1701
Gloucestershire. GL20 8ND Freeport, PA 16229 Pudong New Area, Shanghai
United Kingdom United States of America Postal code: 200122
Tel: +44 (0)1684.292333 Tel: +1 724.540.5018 P.R. China
Fax: +44 (0)1684.297929 Fax: +1 724.540.5098 Tel/Fax: +86.21.58797659

IEC 61131-3 Now in Motion

There is a natural tendency for industries to push toward a standard be it hardware or software, and

programming motion controls is no exception. Dedicated motion controls have been around for over three

decades and in the early years, nearly all had their own unique programming language. While generally

not a problem, a more standardized language would make it easier to support and work between platforms

in a factory environment. Time and technology moves on and the requirement for more standardization in

programming motion have gained momentum. Enter European standard IEC 61131-3. With IEC 61131-3,

programming of PLCs, distributed control systems, and motion controllers from different manufacturers

is more manageable. The International Electrotechnical Commission (IEC) identifies five standard

programming languages as the most common for both process and discrete programmable controllers:

Ladder Diagram (LD), Function Block Diagram (FBD), Sequential Function Chart (SFC), Structured

Text (ST), and Instruction List (IL). IEC 61131-3 is the third part of the open international standard IEC

61131 for programmable logic controllers, first published in 1993 by the IEC then later revised in 2003.

Part 3 specifically deals with the five programming languages. The European standard has become more

popular in the US in recent years, and more specifically, being adopted by dedicated motion control

companies like Trio Motion Technology. By incorporating the standard, then adding advanced motion

functions like cams, gearing, and interpolated motion, there can now be a uniform programming method

for PLCs and controllers specializing in motion and machine control. In this article we want to look at the

various IEC programming styles, and how they would apply specifically to motion control. When should

you use one language style over the other?

Of course you could program an application using several IEC languages of the controller, and that may

be ideal. However knowing the strengths and weaknesses of each style can simplify the task at hand while

taking advantage of the controller’s capabilities.

Date: 09 January 2013

Subject: PLC Programming Standards in Motion Control

 Page 2 of 6

LD program with a basic interlock, and a triggered move with a Busy and Done output.

Ladder Diagram

Probably the most

widely recognized

because of its use in

PLCs and analogy to

real world circuits is the

Ladder Diagram. LD

programming is a

graphical language that

is generally best suited

to applications where

only binary variables

are required and where

interlocking and

sequencing of points is

the primary control

problem. An example

would be material handling on a conveyor with sensors and discrete output actions. Execution of rungs is

sequential within a program.

LD makes it easy to visualize machines functions and operations along a rung as it closely represents the

physical connections of a system. This makes it easier for the non-programmer to troubleshoot, certainly

one consideration for using LD in a motion application. Specific motion functions are not part of the IEC

standard but are added by the manufacturer of the controller. The motion function block is setup the same

as other IEC functions requiring specific inputs and having outputs. For a simple index move, an input

value is specified for an axis number and a distance. The data type for each is required and for the

function shown are USINT (small unsigned integer) and LREAL (long real floating point) respectively.

A BOOL enable input triggers the motion, which could be from a box passing a photo-eye on a conveyor

for example. This basic interlock and triggered move is ideal for LD. Easy to implement, and easy to

follow.

 Page 3 of 6

FBD program using two inputs to trigger an incremental move, and an output when done

The MOVELINK motion block triggers geared motion at a
 finite distance for flying shear and traverse winding applications.

Functional Block

Diagram

Another graphical language

similar in functionality and

style to LD is Functional

Block Diagram. FBD allows

a more freelance style of

programming by connecting

function blocks and tags

together in a circuit fashion.

Being graphical it is easy to

follow and troubleshoot.

Editing a FBD program is

also easy using a drag and

drop method then connecting the

block with ‘wires’. FBD is ideal for

relatively simple motion processes;

however it is possible to tackle motion

such as a flying shears or traversing

winders using advanced synchronizing

motion blocks. A MOVELINK function,

for example, performs geared movement

set by the Dist input. The LinkAxis and

LinkDist inputs are the master reference

typically a conveyor or spindle encoder.

The LinkPos input sets the trigger position

that will start the movement. Such

specialized function blocks can greatly

reduce the size of a program. FBD is not

ideal for large complex motion programs.

The large sheet required can quickly

become difficult to follow if not carefully

planned. In a FBD program, there are no left-right bus bars as in a LD. The diagram is scanned left to

right, top to bottom and does not stop or wait. Flags and variables are set to control the flow of operation.

For example, the Busy output bit from the TC_MOVE1 motion block can be used to monitor the move in

progress by another function block.

 Page 4 of 6

 The ST program spells out inputs and outputs to a move function

SFC program resembles flow chart programming and is
ideal for motion defined by steps.

Structured Text

The third language in the IEC

standard is Structured Text (ST).

ST is a high-level text-based

programming language

resembling PASCAL or BASIC.

As such it is popular among

younger engineers having a

stronger background in text

programming as opposed to a

circuit style. Rather than a

graphical move block ST uses the

same inputs and outputs only

spelled out. Axis number and

distance are listed as are Busy,

Done and other outputs. A physical

input is used to execute the motion. Note this code continuously loops [scans] regardless of no explicit

looping structure. This is different than a traditional motion programming language such as Trio BASIC

that will let the user program a WAIT UNTIL to hold for an event. ST has some very powerful

advantages over the graphical styles. For one a very involved program will be much more compact and

manageable. A complex high axis

count machine such as printing

with automatic registration

correction and 2D or 3D CNC with

file handling would be much better

tackled in an ST program than LD

or FBD. The simple process of

listing and setting parameters is

more efficiently handled in ST.

Sequential Function

Chart

The forth style in the IEC standard

is Sequential Function Chart

(SFC). SFC is analogous to flow

charts and not really a language in

 Page 5 of 6

IL programs use low-level methods similar to assembly
language, making it impractical for most motion control.

(* This is a simple IL program *)

BEGIN_IL

LD x

AND y

ST z

END_IL

a manner of speaking, but actually a way to organize and control the flow of a process. The concept of a

SFC program is pretty simple. An action [step] box with code written in any other IEC language is active

until the transition immediately below activates. The next action box then becomes active. Steps in an

SFC diagram can be active or inactive. Actions are only executed for active steps.

For motion and process control, SFC has some nice advantages. It’s easy to organize and follow the flow

of events. This would be helpful for an end user building and supporting an application. A Motion

function for example, can be added inside an action box in either the P1 (set), N (continuous), or P0

(reset) sub-steps. The P1 sub-step executes once when entering [setting] the action step. This may be an

initial move-to-start motion and firing an output, for example. Then the main program of the step

executes continuously in the N sub-step as a typical IEC program. The N sub-step would generally

contain the motion and logic control needed for that particular machine state. When the transition logic

becomes true for the current running step, the program in the P0 sub-step executes once before exiting

[resetting]. A transition could be triggered by a sensor input from a package or some other real world

event. The SFC program flows to the next step, executing P1 once, then N, and so on in the new step.

Applications best suited to SFC would be a pick and place operation or similar process that has clearly

defined repeating states as it runs.

Instructional List

The last and least commonly used language in the IEC

standard is Instructional List (IL). IL is a low level

language that resembles assembly. It uses very

simple instructions similar to the original mnemonic

programming languages developed for PLCs.

Being the lowest level language of the IEC standard it

does have some notable points. You could convert any IEC program to IL. It is more transferrable to

other platforms than the other languages. However, for motion control IL does have some significant

drawbacks. Any complex math, PID loop or other high-level functions would be very tedious to program

in IL. What can be a simple geared move block in LD or FBD would be a list of low level commands

making IL impractical for most motion control applications.

http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Assembly_language

 Page 6 of 6

In Summary

The IEC 61131-3 standard defines 5 programming languages for PLCs and distributed control systems.

More recently, dedicated motion companies such as Trio Motion Technology are incorporating the

standard into their motion control hardware. By adding specific functions such as camming, electronic

gearing, and interpolated motion the controllers have a widely supported usability on the factory floor.

Additionally, such controllers can be very compact in size and low cost making them a good choice for a

vast array of machines.

For simple and moderate motion applications including material handling, pick-and-place and flying

shears, LD and FBD programming languages are well suited. SFC programming uses a flowchart

approach to organize a process, and contains any other IEC language within each step. If a motion

application can be represented as a state machine SFC is an ideal choice being easy to follow and

troubleshoot. As applications get more complex as in printing with high-speed registration, 2D and 3D

CNC machines, a combination of ST with other languages can be used to take advantage of the

controller’s programming flexibility.

